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The vortex method is a numerical method for approximating the flow of an incompressible, 
inviscid fluid. We consider the two-dimensional case. The accuracy depends on the choice of 
the cutoff function which approximates the delta function, on the cutoff parameter S and on 
the smoothness of the initial data. We present a class of infinite-order cutoff functions with 
arbitrarily high rates of decay at infinity. We also present an eighth order cutoff function with 
compact support. We test two versions of rezoning. Version 1 has been suggested and tested 
by Beale and Majda, while version 2 is new. Using rezoning, we test the eighth-order cutoff 
function and one infinite-order cutotf function on three test problems for which the solution 
of Euler’s equation is known analytically. The accuracy of the infinite-order cutoff function is 
greater than that of the eighth-order cutoff function when the flow is very smooth. We also 
compute the evolution of two circular vorticity patches and the evolution of one square 
vorticity patch over long time intervals. Finally, we make a comparison between the direct 
method of velocity evaluation and the Rokhlin-Greengard algorithm. The numerical 
experiments indicate that for smooth flows, high-order cutoffs combined with rezoning give 
high accuracy for long time integrations. a: 1991 Academic Press, Inc 

The vortex method for Euler’s equation is a numerical method for approximating 
the flow of an incompressible fluid without viscosity. The idea is to approximate a 
vorticity distribution by a finite set of “vortex blobs” which are multiples and trans- 
lates of a certain function known as the cutoff function. The cutoff function is scaled 
by a parameter 6 and approximates the delta function as 6 tends to 0. The vortex 
blobs induce a velocity field, which in turn moves the vortex blobs. The evolution 
of the vortex blobs is computed by solving a system of ordinary differential 
equations by standard numerical methods. In this form, the vortex method was 
introduced by Chorin [9] in 1973. There have been many applications of vortex 
methods, including the simulation of turbulent combustion in open and closed 
vessels, Sethian [23], the computation of unstable boundary layers, Chorin [lo], 
aerodynamic computations, Cheer [S], Spalart [25], Leonard and Spalart [ 181, 
and flow of variable density, Anderson [Z]. 

The vortex method can be extended to simulate viscous flow by letting each 
vortex take a random step after each timestep, see Chorin [9]. Sethian and 
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Ghoniem [24] made an elaborate test of this procedure on viscous flow through 
a channel over a backwards-facing step. 

A list of papers containing convergence proofs for vortex methods includes de1 
Prete and Hald [16], Hald [ 14, 151, Beale and Majda [S, 63, Cottet [13], and 
Anderson and Greengard [3]. Only [3, 151 include convergence for the time 
discretization. 

The accuracy of the vortex method depends on how the delta function is 
approximated, which in turn depends both on the choice of cutoff function and on 
the choice of the paramater 6. Beale and Majda [7] introduced a family of smooth 
cutoff functions, with unbounded support, but decaying very rapidly at infinity 
and Hald [ 151 presented several infinite-order cutoff functions. The rates of 
convergence for the infinite-order cutoffs are only limited by the smoothness of the 
flow. In this paper, we test the practical accuracy of one of these cutoff functions 
for flows of different degrees of smoothness. Our numerical results show that we do 
obtain orders of accuracy slightly exceeding the ones predicted by Hald’s theory, 
but only for short time integrations. The deterioration in accuracy at later times 
was already observed by Perlman [21] and is even more pronounced for infinite- 
order cutoff functions. A natural way to overcome this difficulty is to use the 
rezoning technique. It was suggested and tested by Beale and Majda [7]. In this 
paper, we present two versions of rezoning. The first version is that of Beale and 
Majda [7], but with the added feature of a “built-in” criterion for determining at 
which times we introduce a new grid. The second version also has this feature. It 
is more accurate because it uses more vortices, but it costs more. A different method 
of improving the accuracy for large time integrations was introduced by Beale [4]. 

It follows from Hald’s theory [15], that we should take 6 proportional to $ 
when using infinite order methods. However, it is not clear what the optimal 
proportionality constant is. That depends on a number of factors. First of all, in 
vortex methods without rezoning we always need to use a larger proportionality 
constant, for large integration times. Second the choice of proportionality constant 
depends strongly on the cutoff function and especially on the value of the cutoff 
function at the origin. For example, for the eighth-order cutoff function presented 
in this paper, we have to take a proportionality constant that is about 5.5 times 
larger than for Hald’s infinite-order cutoff function. This is due to the fact that the 
value of the first cutoff at the origin is about 30 times larger than for the second 
cutoff. Finally, the choice depends on the flow itself, at least if it is not radially sym- 
metric. A partial list of numerical experiments that test the accuracy of vortex 
methods includes de1 Prete and Hald [16], Beale and Majda [7], Beale [4], 
Perlman [21], and Nakamura, Leonard, and Spalart [ 191. 

Besides the accuracy of vortex methods, the computational speed is also impor- 
tant. The direct method of computation requires O(N’) flops, where N is the 
number of vortices. A fast algorithm known as the method of multipole expansions, 
is given by Rokhlin and Greengard [22]. This method requires O(N) flops when 
6 is proportional to h, and when it is applicable, it is essentially as accurate as the 
direct method. Another fast method is given by Anderson [ 11. Both of these 
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methods are only strictly applicable when using cutoff functions with compact 
support. For this reason, we present an eight-order cutoff function with compact 
support. We test the Rokhlin-Greengard algorithm [22] using this cutoff function. 

This paper is divided into four sections. In Section 1 we describe the vortex 
method in two dimensions. In Section 2 we present the eighth-order cutoff function 
mentioned above and compare it with Hald’s infinite-order cutoff. In Section 3, two 
versions of the method of rezoning are described, and finally, in Section 4 we 
present our test problems and numerical results. 

1. THE BASIC EQUATIONS 

The vorticity-stream function form of Euler’s equations in two dimensions is 

ot+u~vo=o, (1.1) 
A$ = --CD, (1.2) 

u=$y, u= -4L (1.3) 

where u = (u, u) is the velocity vector, x = (x, y) is the position vector, o is the 
vorticity, and tj is the stream function. 

Solving the Poisson equation (1.2) for $, see [17], and differentiating as in (1.3), 
we obtain the velocity as 

u(x, t) = j K(x -x’) w(x’, t) dx’, (1.4) 
Q(r) 

where K(x) = (-y, x)=/2n (xl’, lx12 =x2 + y2, dx’ = dx’ dy’, and Q(t) denotes the 
support of w in R2 at time t. Since the flow is incompressible and the vorticity is 
preserved along particle paths, see Chorin and Marsden [ 11, p. 341, we can rewrite 
(1.4) as 

444 t), t) = j K(;b, t) - XV, 1)) ML 0) dB. Q(O) (1.5) 

Here ~(a, t) is the position at time t of the particle which starts at tl at time t=O. 
To calculate the velocity, we replace the kernel K by a kernel K6 which is 

bounded at x = 0. KS is the convolution of K with a smooth cutoff function Yg ; i.e., 

Ks(x)=j K(x-x’) Y’,(x’)dx’. 

Here ul, is defined by Y,(x) = 6 -‘Y(x/6), where Y is a smooth radially symmetric 
function satisfying 

s 
Y(x)dx= 1. 

R2 



REZONINGFOR VORTEXMETHODS 369 

Hence, y16 approximates the Dirac delta function as 6 + 0. To complete the dis- 
cretization of (1.5) we replace the variables cc and ,8 by the double indices i = (il, iZ) 
and j, and replace the integral by a sum. This gives us the following system of 
ordinary differential equations 

d~i(t) 
-= i&(t), 

dt 
2; (0) = ih, 

where 

pi= C K,(ii(t)-~j(t)) Cj. (1.7) 
jEJ,j#i 

Here h is the initial distance between adjacent grid-points, J is the set of all indices 
j such that jh E Q(O), and the “vorticity coefficients” Cj are defined as 

cj = w(jh)h*. 

The numerical solution of this system is known as the vortex method. By 
imposing additional conditions on the cutoff function Y one can obtain high rates 
of convergence for this method. 

2. CHOICE OF CUTOFF FUNCTIONS 

In this paper we shall focus our attention on two high-order cutoff functions Y. 
The first one is the following infinite-order cutoff function due to Hald [15], 

w=& (16J,(4r)- 10J3(2r)+J3(r)), (2.1) 

where J, is the Bessel function of order 3. The corresponding velocity kernel is 

K,(x,P)=(-~r~)T(l-~(4J,(4r/6)-5J,(2r/~)+J,(r/~))). (2.2) 

We used this cutoff function on all the test problems in this paper, since we wanted 
to check the performance of infinite-order, cutoff functions in practice. The cutoff 
function (2.1) belongs to a larger class of infinite-order cutoff functions of the form 

-2 ly(r)=n! - 
( > r 

n+’ i Cik~+‘J,+,(k,r). 
i=O 

(2.3) 

Here k, = 1, k, <k, < . . . < k,, and Ci = (-47~ n;=o.i, i (k,2 - kf))-’ for i = 0, . . . . n. 
The velocity kernel corresponding to (2.3) is 

,(~,y)=(-~;)~(l+(~)-~( i riJn(kjr/d))), 
i=O 

(2.4) 
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where yi = 4nn !( -2k,)“C,. The derivation of this class of infinite-order cutoff func- 
tions can be found in [20]. Hald’s cutoff function (2.1) is obtained from (2.3) by 
setting n = 2, k, = 2, and k, = 4. Error estimates for this class of cutoff functions are 
given in Hald [15]. 

The second cutoff function used in this paper, derived in [20], is of eighth order 
and has compact support: 

-52( 1 - r2)9(140r6 - 105r4 + 21r2 - l)/rt for O<r<l 
for r31 (6YAT 1 

27tr2 ( 

+ 1365 

C-Y, xJT 
27cr2 

r2 IO -- d2 >( 286 - 
r2 
sz > 

for 

for 

r66 

r > 6. 

The reason for introducing this cutoff function is that cutoff functions with com- 
pact support are the only ones that are mathematically compatible with “fast” 
vortex methods such as the Rokhlin-Greengard algorithm [22] or Anderson’s 
method of local corrections [ 11. Note that the higher-order cutoff functions of 
Beale and Majda [7] and Hald’s infinite-order cutoff function (2.1) do not have 
compact support. We observe that the speedup for a fast algorithm is limited by the 
size of the cutoff parameter 6. For high-order cutoff functions, 6 must be propor- 
tional to ,/% in order to maintain high accuracy for long time integrations. Thus, 
the amount of computational labor due to “local” interactions is O(iP). 

The eighth-order cutoff function was tried out on test problems l-3, and in 
Section 4 the results are compared to those obtained using Hald’s infinite-order 
cutoff function. We found that the optimal value of 6 for this cutoff function is 
about 1.7 & for test problems l-3. The Fourier transform of Y is given by 

e(t)= -6656.11!.nP2 

Therefore 10; e(k)1 decays like const . (1-t ]kl))‘0.5 ~ ‘OL’ for any double index CL 
According to the convergence theorem of Beale and Majda [6], we then get the 

following error estimates for particle positions and velocities, provided that we take 
6 = Chq with q < 9.5/18.5, and the flow is “sufficiently” smooth: 

max IIXj(t)--j(t)11 < Chsq, 
O<f<T 

max IIUj(t)-Cj(t)ll < Ch8q. 
OGICT 
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Here xi(t) and Uj (t) are the exact position and velocity at time t of a particle 
which starts at j at time t = 0. The norm is the discrte Lp norm with 1 < p < co. In 
particular, we may choose q = 0.5, which would give us fourth-order convergence if 
the flow is smooth enough. 

We would now like to compare this cutoff function Y with Hald’s infinite order 
cutoff function !?. First we note that Y(0) = 52/7c while Y(0) = 1.75/71. Therefore, 
rather than comparing Y and Y, we compare Y= and Y, where c1= Jm and 
Yv,(v) =ae2Y(r/cr). Then, Y,(O)= Y(O), and by plotting YU,(r) and p(r) on the 
same graph, we see that Y@(r) z p(r) for any r (see Fig. 2.1). It is also interesting 
to compare the Fourier transforms of these two cutoff functions (see Fig. 2.2). Once 
again, we get close agreement. We conclude that if we use S = Chy with the eighth- 
order cutoff function Y, and 6’ = C’hY with Hald’s infinite-order cutoff, we should 
have C/C’ = Jm z 5.45. Indeed, in test problems l-3 we found by 
experiments that S’= 0.3 ,f% was the best choice for Hald’s i&rite-order cutoff 
function while the best value of S for the eighth-order cutoff function was about 
1.7 fi. This gives the ratio 1.7/0.3 z 5.67! This analysis suggests that if we have 
found the relationship between S and h experimentally for a particular cutoff func- 

-0.1 1 I I I I I 

0 2 4 6 8 10 
r 

FIG. 2.1. Infinite order cutoK vs scaled 8th order cutoff. Solid curve= Y,(r), dotted curve= ‘?((r), 
a = J-j. 
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FIG. 2.2. Fourier transform-s of Hald’s infinite order cuton and the scaled 8th order cutoff. Solid 
curve = $(olf), dotted curve = p(t), a = ,,/m. 

tion Yy,, then we can determine the best value of 6 as a function of h for any other 
cutoff function Y. Take 

112 
doptimal = t6 1 Ioptimal 

( > 
m 
Y,(O) . 

3. REZONING 

Numerical experiments with infinite-order cutoff functions showed that for 
smooth flows these cutoffs give extremely accurate values of velocity and vorticity 
for short integration times. Unfortunately, this high accuracy is lost as time 
increases, so that for long integration times, these cutoffs are not significantly more 
accurate than lower-order cutoffs. We shall show that one way to overcome this 
problem is the rezoning strategy suggested by Beale and Majda [7]. We will 
present a version of rezoning similar to theirs, which we call Version 1, and a new 
method, which we call Version 2. 
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First we note that since Yy, approximates the delta function as 6 -+ 0, we have at 
time t = 0 that 

o(z,O)z c Y~(z-xxj(o))cj. 
jeJ 

This holds for all z. Here J is the set of all double indices j = (j,, j,) such that 
jh E Q(O), the support of the initial vorticity distribution. Since vorticity is preserved 
along particle paths, we also expect that at later times t, 

O(Z, t)~ C vl,(Z-Xj(t))Cj. (3.1) 
jcJ 

In particular, letting z = Xi(t) in (3.1) gives 

W(Xi(t), ?)% C ya(Xi(t)-Xj(t))Cj. (3.2) 
jcJ 

Multiplying both sides of (3.2) by h* and recalling that Ci= h20(Xi(t), t) for any t 
gives 

ci~hh2 C Y,(Xi(t)-Xj(t))Cj. 
jtJ 

(3.3) 

Therefore we define 

Ch(t)=h* C ~~(Xi(t)-Xj(t))Cj 
jeJ 

(3.4) 

and 

> 112 
h2 1 (C!(t)-Cj)2 . 

jeJ 
(3.5) 

Here E,(t) stands for “the average vorticity error along vortex paths.” With these 
preliminaries out of the way, we can now present the first version of rezoning. 

Version 1 

Step 1. First compute E,(O). Then, as in the standard vortex method, solve the 
system of ordinary differential equations, 

dti(t) 
-=&(t), 

dt 
pi = ih, 

where 

iii(t)= C K,(li(t)-~j(t))Cj. (3.7) 
jeJ 
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After each time step At, calculate E,(t) and E,(t)/E,(O). Continue to solve (3.6), 
(3.7) until 

E,(t) 
E,,(O? 

where rl is a parameter we have to specify. In our numerical experiments we have 
used q= 1.1, rl= 1.25, or q= 1.5. When E,(t)/E,(O)>q we no longer solve (3.6) 
(3.7) but go on to the next step. 

Step 2. Suppose t = T, when we leave Step 1. Now we set Zj( T,) = ij (T,) for 
every j E J. Then we introduce a new square grid, occupying a region A c R2, which 
is somewhat larger than what is needed to cover all point vortices at time t = T,. 
Let J, denote the set of double indices j such that jh E A. For every j E J, introduce 
a new vortex at every grid-point jh. We use the old vortices one last time to 
compute a new “initial” vorticity distribution. To be more precise, we let 

(Ci)newEh* 1 ul,(ih-~j(T,))(Cj)old, for every iE J,. (3.8) 

Now we “throw away” all the old vortices gj and denote the new vortices as gj with 
?kj( T,) = jh. We then delete all the new vortices gi for which I(C~)~~~[ <E, where E is 
a certain tolerance. Let J, be the subset of J, such that I(ci)newl >, E for every i E J,. 
Now for t > T, we solve the following larger system of ordinary differential 
equations: 

fi(% t)’ C Kb(X-gj(t))(Cj)new3 (3.9) 

isJl 

d&(t) 
-= ~(~i, t), 

dt 
ir(Ti)=ih, forevery iEJ,, 

dZi(t) 
- = I(&, t) 

dt 
(3.10) 

Remark. Here the &‘s denote the original vortices. If we are not interested in the 
paths of the original vortices, but the paths of some other particles, we should let 
the Zr’s denote these particles. In that case, we do not set Zl( T,) = %j (T,) at the 
beginning of Step 2. 

Now again we compute E,(t) and E,(t)/Ew (T,) after every time step At, but 
now using the new vorticity coefficients in (3.4) and (3.5). Continue solving (3.9), 
(3.10) until E,(t)/E,(T,) > q. 

Step 3. Suppose t = T, when we leave Step 2. Now repeat Step 2 but replacing 
T1 by T, in all the equations. Also in this step, do not set ~j (T,) = ~j ( T2), for j E J, . 
Continue this process until we reach t = T,,,. 
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Numerical experiments using this technique have indicated a great reduction in 
velocity errors for long integration times compared to the corresponding errors 
without rezoning, but with the same grid-spacing h. In vortex methods without 
rezoning, we are forced to pick a considerably larger value of 6 for long integration 
times. With rezoning, however, we can usually use values of 6 close to the optimal 
value of 6 at time t = 0. Nevertheless, we have also noted that when we use this 
form of rezoning, the velocity error takes a jump every time a new vorticity 
distribution is computed using (3.8). These jumps are small compared to the sharp 
increase in error experienced when no rezoning is applied, but still significant 
compared to the marginal increase in velocity error at intermediate times. To 
reduce this effect and the effect of “numerical viscosity,” we propose the following 
scheme. 

Version 2 

In Version 2 we introduce a liner grid than in Version 1, for the purpose of 
calculating the new vorticity distributions on the new grids. The velocity evalua- 
tions are however done on the coarser grid. This method has some similarities with 
multi-grid methods, but it does not fall into the framework of such methods. The 
details of Version 2 are as follows: 

Step 1. Let Q, be the set of double indices q = (q,, q2) such that qh ELI(O), 
where q, and q2 are integers or half-integers. For every q E Q,, introduce a vortex x,, 
with strength c,, = o(qh)h’. Let J be the integer-pair subset of QO. Then solve the 
following system of ordinary differential equations, for every q E Qo, 

dj2 (t) 
L= ii,(t), 

dt %, (0) = qh, 

where 

I,= C K6(a4(t)-~j(t))Cj. 

jeJ 

(3.12) 

After each time-step At, calculate E,(t) and E, (t)/E,(O) using (3.4), (3.5). Note 
that in calculating E,(t) and E, (t)/E, (0) we use only the vortices and vorticity 
coefficients with integer indices. Continue to solve (3.11) (3.12) until 

Step 2. Suppose t = T, when we leave Step 1. Set Zj (T, ) = 21 (T, ) for every j E J. 
As in Version 1, we introduce a new square grid, occupying a region A c R*. Let 
QA be the set of double indices q= (ql, q2) such that qhEA, with q1 and q2 
assuming both integer and half-integer values. Let J, be the integer-pair subset of 

58 I ‘97,‘2-9 



376 HENRIKO.NORDMARK 

QA. For every q E QA introduce a new vortex at every grid-point qh. Define the new 
vorticity distribution by 

(cq)new=h2/4 1 yu,.(qh-~l(T,))(c,),,,, for every q E QA . (3.13) 
reQ0 

Note that the effective grid-spacing in (3.13) is h/2 rather than h. That is why we 
have a factor of h*/4 in front of the summation sign instead of h2. We must also 
replace Y6 by Y,,, where 6’ is the cutoff parameter corresponding to a grid-spacing 
of h/2. If for any value of h we pick 6 = const . hY, then 6’ = 2-q6. The purpose of 
using (3.13) instead of (3.8) is to make the error in the computed new vorticity dis- 
tribution small compared to the error in the velocity evaluations, thereby reducing 
“numerical viscosity.” As in version 1, we now “throw away” the old vortices jz,, and 
use this notation for the new vortices such that %,(T,) =qh. Then let Q, be the 
subset of QA such that 1 (cq)new 1 > E for every q E Q, , where E is a certain tolerance. 
Let J, be the integer-pair subset of Qi . For t 2 T, solve the system of ordinary 
differential equations, 

fi(x, t) = c J&(x - qtmjLw, (3.14) 
jeJl 

d?i (t) 
2 = a(%,, t), 

dt k,(T1)=qk for every qE Ql, 

d2i(t) 
-=I(Zi, t). 

dt 
(3.15) 

After every timestep At compute E,(t) and E, (t)/Ew (T,), using the new vorticity 
coefficients with integer indices and continue solving (3.14), (3.15) until 
E,(t)lEw(T,)’ 4. 

Step 3. Suppose t = T2 when we leave Step 2. Repeat Step 2 replacing T, by T, 
where applicable. As in Version 1, do not set Zj (T,) = l?j (T,), for j E J1 at this point. 
Continue in the same manner until t = T,,,. 

4. NUMERICAL RESULTS 

We present live test problems. In the first three test problems, the solution is 
known analytically since the vorticity distribution is radially symmetric: The flow 
is circular, and the velocity at any point and at any time is given by 

4x, Y) = (u, 0) = PL(T)( - Y, Xl’> (4.1) 

where P(I) = ( l/r2) 1: so(s) ds is the angular velocity of the flow. 
The other two test problems do not have a known analytical solution. Here we 

show the numerical solutions graphically, and the rate of convergence is estimated 
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by using Richardsons’s extrapolation. In the first three test problems, two different 
cutoff functions are used, namely Hald’s infinite-order cutoff and our eighth-order 
cutoff. Unless specified otherwise, we have used Version 2 rezoning. In all cases we 
used the classical fourth-order Runge-Kutta method for time integration. 

We now look at the first three test problems in detail. In each of these, the 
vorticity distribution has the form 

i 

(1 -?)k 
m(r)= () 

for r61 
for r> 1, (4.2) 

where k = 3 in test problem 1, k = 7 in test problem 2, and k = 14 in test problem 
3. The case k = 3 has been tested numerically by Beale and Majda [7] and Beale 
[4], and the case k = 7 by Perlman [21]. 

It can be shown that the Fourier transform of a vorticity distribution of this form 
iS c,J,+ 1 (t)/tk+ ‘, where Ck is a constant. Thus, G(t) is of order O(tpck + ‘.j)) as 
t -+ co, although o(r) has only k bounded derivatives. In general, a vorticity dis- 
tribution o with compact support and k bounded derivatives only guarantees that 
G(t) is of order O(t-“) as t + co. This means that for test problems 1-3, Hald’s 
estimate [ 15, p. 5681 of the moment error for infinite-order cutoffs can be improved 
to 0(6k+a5 ) rather than O(bkp ‘). 

The solutions of the Euler equation for these vorticity distributions are given by 
(4.1) with 

1 -(l -,*)k+’ 
2(k + l)r* 

for rQ1 

p(r) = 
1 

2(k + l)r* 
for r> 1. 

We measure the velocity error in the discrete L2 norm, 

( > 

112 
E,= h* C luj(t)-ij(t)12 

jsJ 

The rate of convergence is estimated by using two successive values of h, 

rate of convergence = 1Wu(WEu(~2)) 
ln(hlh2) ’ 

(4.3) 

(4.4) 

(4.5) 

Tables Ia and Ib give the velocity errors in test problem 1 at different times up to 
time t = 50, for different values of h, and for the two different cutoff functions. We 
choose 6 = const . fi, so that the moment error and the discretization error will be 
of approximately the same order in h. The proportionality constant has been 
chosen so as to minimize the velocity error at time t = 0 when h = 0.100. Comparing 
these two tables, we see that the errors are between 5 and 29% larger when the 
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TABLE Ia 

Velocity Errors for Test Problem 1 

E, 

1 h =0.125 h=O.lOO h = 0.0625 h = 0.05 

0.0 0.1665 x lo-“ 0.9000 x 10 --5 0.3142 x lo-’ 0.1886 x 10m5 
10.0 0.5340 x 1o-4 0.2562 x 10m4 0.6775 x 10m5 0.3829 x 10m5 
20.0 0.1201 x lo-’ 0.5473 x 10m4 0.1377x 1om4 0.7372 x lo-’ 
30.0 0.2011 x 1o-3 0.9110 x 1om4 0.2268 x 10 m4 0.1200 x 1om4 
40.0 0.2982 x 10 ’ 0.1358 x 1om3 0.3321 x lO-4 0.1727 x 10m4 
50.0 0.4141 x 1om3 0.1880 X lo-’ 0.4559 x 1om4 0.2327 x 10m4 

Note. w(r) = (max(0, 1 - r2))3. Cutoff function, Huld’s infinite-order, = ‘1 1.1, 6 = 0.3 &, dt = 4.0 h, 
T max = 50.0. 

eighth-order cutoff is used. The rates of convergence for the two cutoffs are also 
approximately the same for corresponding times t, as seen in Tables IVa and IVb. 
Since we take 6 proportional to ,/%, we can expect the moment error to be of order 
0(/z’.“) and the discretization of order 0(/r*), with the infinite-order cutoff function. 
We could therefore only expect a rate of convergence of 1.75. However, the 
observed rate of convergence is greater than 2. In particular, at time t =0, the 
computed rate of convergence is 2.3, both using infinite-order and eighth-order 
cutoffs. Since Perlman [21] has shown numerically that at time t = 0 the moment 
error is much larger than the discretization error, this seems to indicate that the 
moment error is actually of order O(C?~.~), rather than the best theoretical estimate 
of O(d3.‘). Beale and Majda [7] observed a rate of convergence of 3.6 at time t = 0 
for this problem, using an eighth-order Gaussian cutoff function, but with 6 
proportional to ho.“, which would correspond to a moment error of order O(C?~.~) 

TABLE Ib 

Velocity Errors for Test Problem 1 

E” 

t h=0.125 

0.0 0.1751 x 1om4 
10.0 0.6122 x 10m4 
20.0 0.1519 x 10-j 
30.0 0.2751 x lo- ’ 
40.0 0.4207 x lo-’ 
50.0 0.5799 x 10-j 

h=O.lOO h = 0.0625 

0.9473 x 1om5 
0.2945 x 10m4 
0.6172 x 10m4 
0.1062 x 10m3 
0.1594x 1om3 
0.2225 x 10 - 3 

0.3329 x 10m5 
0.7661 x lo-’ 
0.1497 x 1om4 
0.2429 x 10m4 
0.3609 x 10m4 
0.5000 x lo-4 

h = 0.05 

0.1998 x 10m5 
0.4233 x 10 - 5 
0.8168 x 1om5 
0.1339 x 1om4 
0.1974 x 1om4 
0.2681 x lo-“ 

Note. o(r) = (max(0, 1 -r*))‘. CutofT function, 8th order u~ith compact supporf, q = 1.1, 6 = 1.7 fi, 
Al = 4.0 h, T,,,,, = 50.0. 
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TABLE Ha 

Velocity Errors for Test Problem 2 

t h=0.125 h =O.lOO h = 0.0625 h = 0.05 

0.0 0.3242 x 10 5 0.1293 x lo-’ 0.1587 x lo-” 0.6384 x lo-’ 
10.0 0.1634 x 10m4 0.5244 x 1O-5 0.8657 x 10m6 0.3588 x IO-” 
20.0 0.3291 x 10m4 0.1108x lO-4 0.1791 x loms 0.7356 x 10m6 
30.0 0.5286 x lo-“ 0.1815 x lO-4 0.2810 x IO-’ 0.1143 x loms 
40.0 0.7567 x 1Om4 0.2639 x lOmA 0.3910 x lo-5 0.1580x 10-j 
50.0 0.1027 x lo-’ 0.3600 x 10m4 0.5098 x 10-j 0.2046 x 10-j 

Note. o(r) = (max(0, 1 - r2))7. Cutoff function, Huld’.r irzfinite-order, q = 1.1, 6 = 0.3 $, dl = 4.0 h, 
T max = 50.0. 

which is quite close to what we observed. Beale and Majda [7] also applied 
rezoning to this problem, with h = 0.125 and 6 = 0.25. In comparing our results with 
theirs, we have to convert our absolute errors to relative errors obtained by 
dividing the absolute error by an average velocity U, where 

u’=Jj lu12dxdy. 
rS1 

For test problem 1, U z 0.2668, so if we divide our values of E, in Tables Ia and 
Ib by 0.2668, we obtain relative velocity errors ranging from 0.006 % at time t = 0 
to 0.09% at time t = 35, using infinite-order cutoff with h = 0.125 and 
6 = 0.3 4 z 0.1061. With the eighth-order cutoff and Version 2 of the rezoning, the 
corresponding relative errors are 0.007 % at time t = 0 and 0.13 % at time t = 35. 
Beale and Majda [7] reported relative errors of 0.055 % at time t = 0 and 0.30 % 

TABLE IIb 

Velocity Errors for Test Problem 2 

t h=0.125 h=O.lOO h = 0.0625 h = 0.05 

0.0 0.1352x 10m4 0.4651 x 10-j 0.8460 x 1O-6 0.3576 x 10m6 
10.0 0.6466 x 10m4 0.2441 x 10m4 0.3822 x 10-j 0.1518 x lO-5 
20.0 0.1521 x lo-’ 0.5617 x lo-“ 0.8522 x 10-j 0.3209 x 10-j 
30.0 0.2642 x 10-j 0.9726 x 10m4 0.1414 x 1o-4 0.5246 x 10-j 
40.0 0.3964 x 10-j 0.1460 x 10m3 0.2057 x 10 -4 0.7588 x 10-j 
50.0 0.5477 x 10-j 0.2034 x 10 3 0.2794 x 10 -’ 0.1023 x lO-4 

Note. w(r) = (max(0, 1 - r2))‘. Cutoff function, 8th order with compact support, q = 1.1, 6 = 1.7 4, 
AI = 4.0 h, T,,,,, = 50.0. 
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TABLE IIIa 

Velocity Errors for Test Problem 3 

t h=0.125 h=O.lOO h = 0.0625 h = 0.05 

0.0 0.4859 x 10m4 0.1782 x 1O-4 0.1304x 1om5 0.2337 x 10m6 
10.0 0.2033 x 10m3 0.8081 x 1o-4 0.4243 x 10m5 0.7356 x 10m6 
20.0 0.4347 x lo-) 0.1502 x 1O-3 0.8455 x 1O-5 0.1445 x 1o-5 
30.0 0.7052 x lo-’ 0.2375 x 1O--3 0.1321 x 1O-4 0.2184 x lo--’ 
40.0 0.1000x 1o-2 0.3369 x lo-’ 0.1804 x 1O-4 0.2940 x lo-’ 
50.0 0.1339 x lo-* 0.4475 x 1o-3 0.2357 x lO-4 0.3711 x 1om5 

Note. o(r) = max(O, 1 - r*))14. Cutoff function, Hald’s infinite-order, q = 1.1, 6 =0.3 J, Af = 4.0 h, 
T max = 50.0. 

at time t = 36, using rezoning version 1. Beale [4] introduced a different approach 
to reducing the error for large times. Using the method in [4] with a fourth-order 
cutoff function, and on the same test problem, he obtained a relative error of 0.06% 
at time t = 0 and a maximum relative error of 1.0% for t < 40. While this is 
considerably better than using the original method, it is not as accurate as either 
of the two rezoning methods with the higher-order cutoff functions. 

The results of test problem 2 are summarized in Tables IIa, IIb. As in test 
problem 1, we pick 6 = 1.7 $, for the eighth-order cutoff and 6 = 0.3 3 for the 
infinite-order cutoff. Numerical tests have shown that these values of 6 are close to 
the optimal ones at time t = 0, with h = 0.100, even for this vorticity distribution. 
Comparing Table IIa to Table IIb, we see that the errors using the infinite-order 
cutoff are smaller than the corresponding errors for the eighth-order cutoff by a 
factor ranging from about 3 to 6. Nevertheless, the rate of convergence is around 
4 for both methods at all times. Theoretically, the moment error for infinite-order 

TABLE IIIb 

Velocity Errors for Test Problem 3 

E” 

t h=0.125 

0.0 0.5584 x 10m4 
10.0 0.2795 x 1O-3 
20.0 0.7324 x 10m3 
30.0 0.1238 x lo-* 
40.0 0.1807 x 1O-2 
50.0 0.2522 x 10 ~’ 

h=O.lOO 

0.2759 x 1O-4 
0.1289 x lo-’ 
0.2955 x lo-’ 
0.7755 x 10-3 
0.1819 x lo-* 
0.3071 x 10-Z 

h = 0.0625 

0.5139 x 1om5 
0.2214 x 1O-4 
0.4790 x 1o-4 
0.7981 x lo-’ 
0.1149 x 1o-3 
0.1554x lo-) 

h = 0.05 

0.2264 x 10-5 
0.9603 x 10W5 
0.2050 x 10m4 
0.3306 x 10m4 
0.4732 x 10 4 
0.6337 x 1O-4 

Note. w(r) = (max(0, 1 - r2))14. Cutoff function, 8th order with compact support, q = 1.1, 6 = 1.7 &, 
Ar = 4.0 h, T,,,,, = 50.0. 
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TABLE IVa 

Rate of Convergence of the Velocity Approximations in 
Test Problems 1-3, Using Hald’s Infinite Order Cutoff 

Rate of Convergence 

I w(r) = (1.0 - r*), w(r)=(l.o-rz)’ w(r)=(1.0-rz)‘4 

0.0 2.3 4.1 1.1 
10.0 2.6 4.0 7.8 
20.0 2.8 4.0 1.9 
30.0 2.8 4.0 8.1 
40.0 2.9 4.1 8.1 
50.0 3.0 4.1 8.3 

Note. 6 = 0.3 $I. 

cutoffs is O(?J’.~) for this vorticity distribution; so, since 6 is proportional to &, we 
would expect a rate of convergence of 3.75 in this case. Hence, the observed rate of 
convergence is slightly higher than the theoretical rate as in test problem 1. Perlman 
[21] tested Gaussian cutoff functions of different orders on this vorticity distribu- 
tion, but without rezoning. Using an eighth-order Gaussian cutoff, she had to take 
6 = ho.7 to minimize the velocity consistency error at time t = 10 and 6 = ho.6 to 
minimize the consistency error at time t = 20. With these parameters and h = 0.05, 
she obtained a minimum consistency error of 7.42 x IO-’ at time t = 10 and 
5.77 x 10e4 at time t = 20. We should point out that the total error is larger than 
the consistency error. Our smallest (total) errors at time t = 10 and t = 20, with 
h =0.05 are 3.59 x 10e7 and 7.36 x 10p7, respectively, so the rezoning procedure 
seems to pay off, at least when the flow is this smooth. 

In test problem 3, the difference in velocity errors between the two cutoff func- 
tions is small for h = 0.125, but it increases as h gets smaller (Tables IIIa, IIIb). For 

TABLE IVb 

Rate of Convergence of the Velocity Approximations in 
Test Problems 1-3, Using the Eighth-Order Cuttoff 

Rate of convergence 

I o(r)=(l.O-r*)’ w(r)= (1.0-r2)7 o(r)=(1.0-rz)‘4 

0.0 2.3 3.9 3.7 
10.0 2.1 4.1 3.7 
20.0 2.1 4.4 3.8 
30.0 2.1 4.4 4.0 
40.0 2.1 4.5 4.0 
50.0 2.8 4.5 4.0 

Note. 6 = 1.7 Js; 
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h = 0.05 the error is 9.7 times smaller at time t =0 and 17.1 times smaller at time 
t = 50 for the infinite-order cutoff compared to the eight-order cutoff. The rate of 
convergence is close to 8 for the infinite-order cutoff, but as expected around 4 for 
the eighth-order cutoff. The theoretical rate of convergence for the infinite-order 
cutoff is 7.25 in this case, since the moment error is O(C?‘~,~), so once again the 
observed rate of convergence is higher than the theoretical rate. We also made a 
comparison of rezoning version 1 vs rezoning version 2 using test problems l-3 
with the infinite-order cutoff. The results are shown graphically in Figs. 4.14.3. We 
see that Version 2 gives a significantly lower error and that the gap between the two 
versions increases with increasing smoothness of the flow. The sharp peaks in the 
graphs are due to the fact that sometimes the velocity error increases faster than the 
vorticity error. Then, after rezoning, the velocity error decreases again. In practice, 
these peaks do not matter, since the error at any time is much smaller than that 
obtained without rezoning, as we see in Fig. 4.4. 

In the fourth test problem, we distribute the vorticity on two circles according to 

0(x, y) = (max(0, (1 - 4( 1x1 - 0.5)’ - 4~~)))‘. (4.6) 

0.00020 

o.ooo15 

EU 

0.00010 

O.OOWS 

FIG. 4.1. Rezoning, Version 2 vs Version 1; w(r) = (max(0, 1 - r’))‘, solid curve = Version 2, dotted 
curve = Version 1, h = 0.0625, 6 = 0.3 ,,f%, ‘1 = 1.25, At = 4.0 h. 
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FIG. 4.2. Rezoning, Version 2 vs Version 1; w(r) = (max(0, 1 - r’))‘, solid curve = Version 
curve = Version 1. h = 0.0625, 6 = 0.355 &, 9 = 1.25, At = 4.0 h. 
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FIG. 4.3. Rezoning, Version 2 vs Version 1; o(r) = (max(0, 1 - r2))14, solid curve = Version 

curve = Version 1, h = 0.0625, 6 = 0.3 ,,/%, q = 1.25, At = 4.0 h. 
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0 10 20 30 40 so 

FIG. 4.4. Original vortex method; o(r) = (max(0, 1 - r*))‘, h = 0.0625, 6 = 0.5 q”& At = 4.0 h. 

Thus, we have two vorticity patches with the vorticity distributed as in test 
problem 2. Note that this test problem differs from the famous test problem 
considered by Christiansen [12]. Christiansen [12] used uniform vorticity 
distribution within the two circles. However, in our test problem the vorticity is 
concentrated at the centers of the circles and decays to 0 in a smooth fashion as we 
approach the boundary. The numerical solution using Hald’s infinite-order cutoff 
with rezoning is shown in Figs. 4.54.15. The graphs represent vorticity level sets at 
different times from time t = 0 to time t = 100. To estimate the rate of convergence, 
we have used Richardson’s extrapolation with three different gridsizes h, 2h/3, and 
h/2. Assuming the rate of convergence is q, we can write tit = ui + h4e(x, y, t) + 
(higher order terms). Then 

lItif - ip3 I( hY - (2h/3)Y 1 - (2/3)” 
llfifh’3 - a; ’ 1) - (2h/3)Y - (h/2)Y = (2/3)y - (l/2)*’ * (4.7) 

The norm is taken to be the discrete L, norm of the differences in the computed 
velocities for vortices with the same initial positions. Once we have computed the 
first quotient in (4.7), we set the third quotient equal to this value and solve for q 
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FIG. 4.5. Vorticity level sets; time = 0.0, o(n, y, 0) = (max(0, (1 -4( 1x1 - 0.5)* -4$)))‘, h = 0.0625, 
6 = 0.28 Ji;, tj = 1.25, E = 0.00004 h2, At = 5.0 h. 
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FIG. 4.6. Vorticity level sets; time = 10.0, w(x, y, 0) = (max(0, (1 - 4(1x( - 0.5)2 - 4~~)))‘. 
I = 0.28 $I, q = 1.25, E = 0.00004 h2, Ar = 5.0 h. 
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FIG. 4.7. Vorticity level sets; time = 20.0, O(X, y, 0) = (max(0, (1 - 4( 1x1 - O.5)2 - 4y*)))‘, h = 0.0625, 
6 = 0.28 &, 1 = 1.25, E =0.00004 h’, At = 5.0 h. 
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FIG. 4.8. Vorticity level sets; time = 30.0, w(x, y, 0) = (max(0, (1 - 4( 1x1 - O.S)* - 4~‘)))‘. h = 0.0625, 
6 = 0.28 fi, tj = 1.25, E = 0.00004 h2, At = 5.0 h. 
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FIG. 4.9. Vorticity level sets; time = 40.0, w(x, y, 0) = (max(0, (1 - 4( 1x1 -OS)* - 4y*)))‘, h = 0.0625, 
6 = 0.28 Ji;, 4 = 1.25, E = 0.00004 h’, At = 5.0 h. 
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FIG. 4.10. Vorticity level sets; time = 50.0, w(x, y, 0) = (max(0, (1 -4(1x1 -0.5)* -4Y*))‘, h =0.0625, 
6 =0.28 &, rj = 1.25, E = 0.00004 h*, At = 5.0 h. 
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FIG. 4.11. = 
6 = 0.28 &, 

Vorticity level sets; time = 60.0, o(x, y, 0) = (max(0, (l-4( 1x1 -0.5)2-4y2)))‘, h 0.0625, 
9 = 1.25, E = 0.00004 h’, At = 5.0 h. 
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FIG. 4.12. 
6 = 0.28 Js;, 

Vorticity level sets; time = 70.0, w(x, y, 0) =;max(O, (l-4( 1x1 -OS)‘-4y2)))‘, h = 0.0625, 
tj = 1.25, E = 0.00004 h=, At = 5.0 h. 
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FIG. 4.13. 
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Vorticity level sets; time = 80.0, 0(x, y. 0) = (max(0, (l-4( 1x1 -0.5+4y2)))‘, 
q = 1.25, E = 0.00004 h2, At = 5.0 h. 
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FIG. 4.14. Vorticity level sets; time = 90.0, o(x, y, 0) = (max(0, (l-4( 1x1 -0.5)2-4y2)))7, h = 0.06 
S=O.28$, q=1.25, ~=0.00004h2, Ar=5.0h. 

389 

125, 



390 HENRIK 0. NORDMARK 
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FIG. 4.15. Vorticity level sets; time= 100.0, w(x, y, O)=(max(O, (I -4(1x1 -0.5)*-4y2)))‘, h=0.0625, 
6 = 0.28 4, tj = 1.25, E = 0.00004 h*, At = 5.0 h. 

numerically. Using the three grid-sizes h = &, h = A, and h = &, we obtain the rates 
of convergence in Table V. We see that the rates of convergence for this problem 
are similar to the rates observed in Problem 2. 

In the fifth test problem, the initial vorticity is distributed on a square according 
to 

0(x, y) = ((max(0, 1 -x*))(max(O, 1 - y’)))‘. (4.8) 

The rates of convergence at different times up to time t = 50 are estimated in the 
same way as in test problem 4, using the same three grid-sizes. Here, we had to take 
a larger value of 6 in order to maintain a high rate of convergence up to time t = 50. 
The observed rates of convergence are lower than in problems 2 and 4, although 
the initial vorticity distribution has the same smoothness in this case. It is possible 
that the Fourier transform of the vorticity distribution has a lower rate of decay in 
this case, causing a lower rate of convergence. Figures 4.164.22 show the computed 
vorticity level sets at times t = 0, 10, 20, 30, 40, 50, and 100. 

Finally, we made a comparison between the direct method of evaluating the sum 
in (1.7) and the Rokhlin-Greengard algorithm [22]. For this, we used the vorticity 
distribution of test problem 2, the eighth-order cutoff function, and 6 = 1.7 3. The 
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TABLE V 

Rate of Convergence of the Velocity 
Approximations in Test Problem 4, 
Using Hald’s Infinite Order Cutofl 

t 

0.0 
10.0 
20.0 
30.0 
40.0 
50.0 
60.0 
70.0 
80.0 
90.0 

100.0 

Rate of 
convergence 

3.1 
4.1 
4.3 
4.1 
4.4 
4.4 
4.2 
4.6 
4.5 
4.5 
4.9 

Note. o(x, y, 0) = (max(0, (1 - 4( 1x1 - 0.5)’ - 4~~)))‘; 
h = 0.0625, 6 = 0.28 Js;, q = 1.25, E = 0.00004 h’, Ar = 5.0 h. 
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FIG. 4.16. Vorticity level sets; time = 0.0, w(x, y, 0) = [[max(O, 1 -.x’))(max(O, 1 -$)))‘, h = 0.0625, 
6 = 0.355 &, TV = 1.5, At = 4.0 h. 
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FIG. 4.17. Vorticity level sets; time = 10.0, o(x, y, 0) = ((max(0, 1 -x2))(max(0, 1 -y2)))‘, h = 0.0625, 
6 = 0.355 3, q = 1.5, At = 4.0 h. 

FIG. 4.18. 
6 =0.355 $I, 
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Vorticity level sets; time = 20.0, 0(x, y, 0) =*((max(O. 1 -x2))(max(0, 1 -y2)))‘, Vorticity level sets; time = 20.0, 0(x, y, 0) =*((max(O. 1 -x2))(max(0, 1 -$)))‘, 
qtl.5, Ar=4.0h. qtl.5, Ar=4.0h. 
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h = 0.0625. 
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FIG. 4.19. Vorticity level sets; time = 30.0, o(x, y, 0) = ((max(0, 1 -x2))(max(0, l-v*)))‘, 
6 = 0.355 Ji;, 7 = 1.5, At = 4.0 h. 

h = 0.0625. 
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FIG. 4.20. Vorticity level time sets; = 
= 0.355 ,/ii, = 1.5, AI = 4.0 h. 

40.0, o(x, 0) = y, ((max(0, 1 -x’))(max(O, 1 -v’)))‘, h = 0.0625, 
S tj 
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FIG. 4.21. Vorticity level sets; time = 50.0, W(X, y, 0) = ((max(0, 1 -z?))(max(O, 1 -y’)))‘, h = 0.0625, 
6 = 0.355 Ji;, q = 1.5, At = 4.0 h. 
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FIG. 4.22. Vorticity level sets; time= 100.0, o(x, 0)= y, ((max(0, 1 -x2))(max(0, 1 -Y*)))~, h = 0.0625, 

6 = 0.355 &, tj = 1.5, Ar = 4.0 h. 
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TABLE VI 

Rate of Convergence of the Velocity 
Approximations in Test Problem 5, 
Using Hald’s Infinite Order Cutoff 

1 
Rate of 

convergence 

0.0 3.2 
10.0 3.2 
20.0 3.2 
30.0 3.3 
40.0 3.3 
50.0 3.3 

Nofe. w(x, 0) = ((max(0, y, 1 - x’))(max(O, 1 - 
= 0.0625, 6 = 0.6 Ji;, = 1.5, 

$)))‘; 
h 7 At = 4.0 h. 

TABLE VII 

A Comparison between the Direct Method and the Rokhlin-Greengard Method 

Direct method RokhlinCIreengard method 

h N El4 CPU time El4 CPU time 

l/16 797 0.8460 x lO-6 1.00 0.8459 x tom6 0.87 
l/20 1257 0.3576 x 10 ~’ 2.40 0.3575 x 10mh 1.46 
l/32 3209 0.5927 x 1o-6 14.7 0.5927 x 10m6 5.46 
l/40 5025 0.2507 x lo-’ 33.3 0.2508 x lo-’ 10.1 
l/64 12853 0.4021 x 10-s 218.2 0.4034 x lomx 40.7 

Note. 6 = 1.7 3. 

TABLE VIII 

A Comparison between the Direct Method and the Rokhlin-Greengard Method 

h N 

Direct method 

E, CPU time 

Rokhlin-Greengard method 

E” CPU time 

l/16 797 0.4889 x lO-6 0.96 0.4889 x 1O-6 0.76 
l/20 1257 0.1109 x 1om6 2.32 0.1108x 10m6 1.28 
i/32 3209 0.1622 x lo-’ 14.4 0.1613 x lo-’ 4.3 
l/40 5025 0.6553 x lo-* 32.8 0.6548 x lo-’ 8.3 
l/64 12853 0.9789 x 1O-9 215.0 0.1095 x lo-8 30.4 

Note. 6 = 1.42 4, 
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number of terms in the multipole expansion, see [22], was set to 16. The results are 
summarized in Table VII. Here, N stands for the number of vortices, E, for the 
velocity error at time t = 0, and the CPU time is given in minutes for one velocity 
evaluation at time t = 0 on a Gould computer. We have to emphasize that the speed 
of the Rokhlin-Greengard algorithm applied to vortex methods is limited by the 
size of the cutoff parameter 6. In fact, we set the length of a side of each box at the 
highest level of refinement equal to 6 + 0.01. The number of levels of refinements is 
then taken to be the smallest integer 1 such that 6 .2’- ’ > 1.0. This is exactly what 
we need to cover the support of the initial vorticity distribution in test problem 2. 
The Rokhlin-Greengard algorithm runs faster if we choose 6 smaller, since this 
decreases the number of “local” interactions. To demonstrate this, we repeated the 
calculations using the same cutoff function but with 6 = 1.42 $. See Table VIII. 
The errors are also smaller for the smaller 6, but unless we apply rezoning, this is 
only true for time t = 0. It is clear that the rezoning frequency must increase as 6 
decreases. If 6 is taken still much smaller, we will see an increase in the error even 
for time t = 0. Therefore, to be able to take 6 so small that the algorithm will run 
with optimal speed, we would have to choose a lower order cutoff function, which 
we do not believe is such a good idea for smooth flows. However, if the flow is not 
very smooth, we may very well use a lower order cutoff function, a smaller 6, and 
use the RokhlinGreengard algorithm with maximum efficiency. 

It is also important to calculate the “local” interactions in real variables, as in the 
direct method, even though the non-local interactions are calculated in terms of 
complex variables. Otherwise the computational speed of the Rokhlin-Greengard 
algorithm decreases. 
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